POSSIBLE CONFORMATIONS AND RELATIVE STABILITY OF THE 7-MEMBERED RING IN $1\alpha,5\beta,6,7\alpha(H)$ -AND $1\beta,5\alpha,6,7\alpha(H)$ -GUAI-11(13)-EN-6,12-OLIDES

A. S. Fazylova and K. M. Turdybekov

UDC 547.913.5:541

Stereoisomers of $1\alpha,5\beta,6,7\alpha(H)$ - and $1\beta,5\alpha,6,7\alpha(H)$ -guai-11(13)-en-6,12-olides are calculated using molecular mechanics. The possibility of forming various conformations in the 7-membered ring is examined as a function of the fusion to the 5-membered C-ring. The effect of the methyl orientation on the conformation of the 7-membered ring and the relative stability of the conformers are discussed.

Key words: guaianolides, conformers, conformation of 7-membered ring.

In continuation of conformational studies of sesquiterpene lactones, the structures of *trans*- and *cis*-fused nonlinear guaianolides are calculated by molecular mechanics (MM) in order to determine the possibility of forming various conformations of the 7-membered C-ring and the relative stability of the conformers with various (α - or β -) orientations of the methyls on C4 and C10.

Eight model compounds (1-8) with various configurations at chiral atoms C1, C4, C5, and C10 and *cis*-fusion of rings *B* and *C* were selected for the calculation. A preliminary examination of conformations of 1-8 using Dreiding molecular models showed that the 7-membered ring in 1-4 can adopt four chair $[6,7\alpha,10\beta-C(a), 1\alpha,7,8\beta-C(b), 6\alpha,9,10\beta-C(c), 1,10\alpha,7\beta-C(d)]$ and two boat $[5,8,9\beta-B(e)$ and $7,10,1\alpha-B(f)]$ conformations. The 7-membered ring in 5-8 can adopt four chair $[10\alpha,6,7\beta-C(g), 9,10\alpha,6\beta-C(h), 7\alpha,1,10\beta-C(i), 7,8\alpha,1\beta-C(j)]$ and four boat $[7,1,10\beta-B(k), 6,7,10\beta-B(l), 5,8,9\alpha-B(m), 6,9,10\alpha-B(n)]$ conformations.

After optimizing the geometries of the six starting idealized conformers *a*-*f* of 1-4, it turned out that only four conformers of isomers 2 and 3 are stable. The methyl on C14 in these has the β -orientation. Five conformers are stable for 1 and 4. These have the C14 methyl with the α -orientation. Conformer *a* of ring *B* is only slightly distorted from the ideal transition to 6,7 α ,10 β -C (1a-4a). The different orientation of the methyl in 1-4 causes different conformational distortions of the ring from the ideal *C*. Thus, a comparison of torsion angles in ring *B* for 1a-4a (Table 1) shows that the ring is slightly distorted from ideal 6,7 α ,10 β -C [S₂/(S₈ + S₂) = 0.9, Δ C₈¹⁰ = 4.4 and 2.4° in 1a and 4a, respectively] if the C14 methyl has the α -orientation. If it has the β -orientation, the distortion increases significantly [S₂/(S₈ + S₂) = 0.8 and 0.5, Δ C₈¹⁰ = 7.9 and 17.9° for 2a and 3a, respectively].

Institute of Phytochemistry, Karaganda, fax (3212)-43-37-73. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 54-56, January-February, 2000. Original article submitted July 7, 1999.

Conformation								
	C1-C5	C5-C6	C6-C7	C7-C8	C8-C9	C9-C10	C10-C11	E, kcal/mol
$6,7\alpha,10\beta$ -C (1a)	-83	64	5	-71	85	-60	60	33.0
1,5α,10,9β-TC (1b)	-76	79	-23	-52	90	-69	55	32.4
7,8α,5,6β-TC (1c)	-94	61	-40	60	88	40	46	34.5
5,8,9β-B (1d)	-64	65	20	-64	4	59	-21	39.8
8,9a,,1,10β-TB (1e)	-83	48	38	-52	-24	58	10	38.9
$6,7\alpha,10\beta-C$ (2a)	-89	62	9	-72	82	-60	66	34.3
1,5α,10,9β-TC (2b)	-70	75	-24	-49	90	-70	54	36.2
7,8α,5,6β-TC (2c)	-93	61	-39	60	-89	40	45	35.4
5,8,9β- <i>TB</i> (2d)	-58	64	22	-68	4	67	-32	36.7
6,7α,10β-C (3a)	-92	54	20	-79	78	-56	69	32.2
1,5α,10,9β-TC (3b)	-77	79	-24	-50	89	-68	56	33.3
7,8α,5,6β-TC (3c)	-91	62	-38	61	-89	42	42	33.9
5,8,9β-TB (3d)	-61	64	23	-67	2	67	-29	35.5
6,7α,10β-C (4a)	-86	65	2	-69	85	-63	64	30.9
1,5α,10,9β-TC (4b)	-78	81	-24	-51	90	-70	-57	31.0
7,8α,5,6β-TC (4 c)	-91	63	-38	61	-89	41	43	33.0
5,8,9β- <i>B</i> (4d)	-72	60	27	-60	-8	60	-11	38.2
8,9α,,1,10β-TB (4e)	-74	53	33	-55	-19	63	-5	38.1

TABLE 1. Torsion Angles and Ring B Conformers in 1-4 and Their Conformational Energy E

The effect of the β -orientation of the methyl on the conformation of ring *B* is apparent in the significant difference of the corresponding torsion angles ($\Delta \varphi$), reaching 6 and 2°, respectively.

Conformer b of ring B after optimization is intermediate between $1,5\alpha,9,10\beta$ -TC and $6,7\alpha,10\beta$ -C (1b-4b) [$\Delta C_2^7 = 18.4$, 16.8, 16.9, and 17.1°; $\Delta C_5^{10} = 19.3$, 21.1, 19.4, and 20.1°; ($\Sigma_2/(\Sigma_S + \Sigma_2) = 0.4$, 0.3, 0.4, and 0.4, respectively]. The average scatter in the value of the torsion angles is 1-2° (Table 1). This indicates that the methyl orientation has little influence on the distortion of ring B from the ideal TC.

Optimization of two starting conformers (c and d) gives almost ideal 7,8 $\alpha\alpha$,5,6 β -TC (1c-4c) [$\Delta C_2^{10} = 4.9, 3.7, 1.3$, and 2.0°, $\Sigma_2/(\Sigma_S + \Sigma_2) \le 0.1$, respectively]. The methyl orientation also has little effect on the distortion of ring B from ideal TC, $\Delta \phi \le 1^\circ$ for 1c and 2c, 3c and 4c. However, $\Delta \phi = 1$ -3° for 1c and 4c, 2c and 3c, which suggests that the effect of the C14 methyl is greater than that of the C15 methyl.

The boat conformers e and f of 2 and 3, which have the β -orientation of the C14 methyl, after optimization convert to 5,8,9 β -B (2d and 3d) [$\Delta C_S^5 = 6.8$ and 3.9°, $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.8$ and 0.9, respectively]. For isomers 1 and 4, which have the α -orientation of the C14 methyl, conformer e is retained (1d and 4d) [$\Delta C_S^5 = 3.0$ and 11.5°, $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.9$ and 0.8, respectively]. However, conformer f changes to 8,9 α ,1,10 β -TB (1e and 4e) [$\Delta C_2^6 = 20.5$ and 17.9°, $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.3$, respectively], where 1d is less stable than 1e by 1.1 kcal/mol whereas 4d and 4e are equally probable.

The conformational energies (E) of the C- and two TC-conformers of 1-4 indicate that conformers 3a and 4a are more stable and 3b and 4b are less stable for 3 and 4, which have the C15 methyl in the β -orientation ($\Delta E = 1.1$ and 0.1 kcal/mol) whereas 3c and 4c are much less stable ($\Delta E = 1.7$ and 2.1 kcal/mol). It is noteworthy that conformers 4a and 4b are practically equally probable.

Conformer 2a is also more favorable for 2 than 2b and 2c by 1.9 and 1.1 kcal/mol. Conformer 2c is more stable than 2b ($\Delta E = 0.8$ kcal/mol).

The most favorable isomer of 1 is 1b; 1a and 1c are less stable ($\Delta E = 0.6$ and 2.1 kcal/mol).

The significant ΔE between stable conformers C and TC and less stable B for the boat conformers 1d-4d suggests that the last is improbable (for 1-4 ΔE = 7.4, 3.4, 3.3, and 6.3 kcal/mol, respectively, see Table 1).

A comparison of the conformations of the 7-membered ring calculated by MM for 1-4 with the experimental x-ray data indicates that ring B in the crystals adopts the $6,7\alpha,10\beta$ -C conformation in partenin (9) [1] or damsin (10) [2], $1,5\alpha,9$,

Conformation	Bond angle							
	C1-C5	C5-C6	C6-C7	C7-C8	C8-C9	C9-C10	C10-C11	E, kcal/mol
$10\alpha, 6, 7\beta$ -C (5a)	79	-70	12	57	-87	66	-60	34.3
5,6α,7,8β-TC (5b)	93	-60	36	-62	89	-37	-48	33.7
10a,6,7β-C (5c)	89	-63	-5	67	-81	61	-67	33.6
6,7α,8,9β-TB (5d)	60	-66	-18	61	-1	-65	28	37.4
5,6α,7,8β-TB (5e)	61	15	-36	-31	86	-33	-57	40.5
10α,6,7β-C (6a)	80	-70	9	59	-87	67	-61	31.8
5,6a,7,8B-TC (6b)	91	-60	36	-61	91	-41	-43	32.6
1,5 α ,7,8 β -TC (6c)	76	-77	20	52	-86	68	-57	31.8
5,6 α , 1, 10 β -TB (6d)	84	-39	-36	30	45	-57	-21	40.0
5,6α,7,8β-TB (6e)	69	4	-32	-28	88	-39	-53	39.4
10a,6,7β-C (7a)	88	-65	-1	66	-82	63	-67	33.1
5,6 α ,7,8 β -TC (7b)	90	-63	39	-64	91	-41	-41	35.0
1,5α,7,8β-TC (7c)	76	-78	22	50	-88	68	-55	33.6
5,6α,1,10β-TB (7d)	88	-43	-33	32	41	-54	-23	41.5
6,9a,1()a-B (7e)	42	33	-23	-51	62	19	-84	43.5
10α,6,7β-C (8a)	87	-64	0	65	-82	62	-66	35.4
5,6a,7,8β-TC (8b)	92	-61	39	-65	89	-36	-47	36.2
10a,6,7β-C (8c)	82	-74	15	54	-85	67	-61	36.0
6,7α,8,9β-TB (8d)	58	-66	-17	61	-2	-65	30	39.1
6,9a,10a-B (8e)	46	30	-31	-44	80	-11	-67	44.9

TABLE 2. Torsion Angles and Ring B Conformers in 5-8 and Their Conformational Energy E

 10β -TC in 1α H,5 β H,6 α H,7 α H,8 α -angeloyloxy- 10β -acetoxyguaian-6,12-olide (11) [3] or guaianolide (12) [4], or 7,8 α ,5,6 β -TC in confertifiorin (13) [5]. This confirms our calculations.

Optimization of the eight initial idealized conformers g-n for 5-8 shows that ring B adopts only five conformations. The g-conformation of ring B is retained in the first (5a-8a). The torsion angles indicate that ring B in the C4 epimers 5a and 4a, in which the methyl has the α -orientation, is more distorted from ideal $C [\Sigma_2/(\Sigma_S + \Sigma_2) = 0.7 \text{ and } \Delta C_S^2 = 9.5 \text{ and } 8.3^\circ]$ whereas the ring is almost ideal C in isomers 7a and 8a with the β -orientation $[\Sigma_2/(\Sigma_S + \Sigma_2) = 0.9 \text{ and } \Delta C_S^2 = 4.2 \text{ and } 3.7^\circ]$ (Table 2).

The effect of the C15 methyl on the ring *B* conformation is apparent in the significant difference of the corresponding torsion angle of the C4 epimers (5a and 8a, 6a and 7a). The average scatter of the torsion angles ($\Delta \phi$) reaches 6-7° whereas the C14 methyl orientation has little effect ($\Delta \phi = 1$ -3°) (Table 2).

A different conformation of ring *B* is obtained after optimizing the two initial conformers *h* and *i*, 5,6 α ,7,8 β -*TC* (5**b**-8**b**) [$\Delta C_2^{10} = 5.8$, 1.4, 0.8, and 7.0° and $\Sigma_2/(\Sigma_S + \Sigma_2) \le 0.1$, respectively]. The corresponding torsion angles of 5**b**-8**b** indicate that the methyl orientation does not affect the distortion of ring *B* from ideal *TC* ($\Delta \phi$ for 5**b** and 6**b**, 7**b** and 8**b**, 6**b** and 7**b**, and 5**b** and 8**b** is 1-2°) (Table 2).

Conformation *j* becomes intermediate between $1,5\alpha,9,10\beta$ -*TC* and $10\alpha,6,7\beta$ -*C*. The different methyl orientation affects the distortion of ring *B* from ideal *TC* and *C*. Thus, the conformation of ring *B* in isomers 6 and 7, where the C14 methyl has the β -orientation, deviates toward $1,5\alpha,9,10\beta$ -*TC* (6c and 7c) [$\Delta C_2^7 = 19.7$ and 17.8° , $\Delta C_S^{10} = 16.8$ and 18.4° , $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.4$, respectively] whereas in isomers 5 and 8, where the C14 methyl has the α -orientation, ring *B* deviates toward $10\alpha,6,7\beta$ -*C* (5c and 8c) [$\Delta C_S^{10} = 6.2$ and 12.2° and $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.8$ and 0.6, respectively].

For 5 and 8, with the α -orientation for the C14 methyl, the boat conformers (k, l, and m) after optimization convert to $6,7\alpha,8,9\beta$ -TC (5d and 8d) [$\Delta C_2^{-1} = 20.9$ and 18.3° and $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.3$, respectively].

For isomers 6 and 7, which have the β -orientation of the C14 methyl, conformers k and m become intermediate between 5,6 α ,1,10 β -TB and 7,1,10 β -B (6d and 7d) [$\Delta C_2^8 = 17.1$ and 15.5°, $\Delta C_S^7 = 16.3$ and 19.7°, $\Sigma_2/(\Sigma_S + \Sigma_2) = 0.5$, respectively] whereas conformer l optimizes to 10 α ,6,7 β -C (6a and 7a).

For isomers 7 and 8, which have the β -orientation of the C15 methyl, conformation n of ring B is slightly distorted from

6,9,10 α -B (7e and 8e) [$\Delta C_8^6 = 14.9$ and 7.6° and $\Sigma_2/(\Sigma_8 + \Sigma_2) = 0.6$ and 0.8, respectively]. However, isomers 5 and 6, with the α -orientation of the C15 methyl, change after optimization to 5,6 α ,7,8 β -TB (5e-6e) [$\Delta C_2^{-10} = 22.0$ and 19.4 and $\Sigma_2/(\Sigma_8 + \Sigma_2) = 0.4$ and 0.3, respectively]. The conformational energies (E) of the C- and TC-conformers of 5-8 indicate that ΔE for the three (a, b, and c) conformers in 5, 6, and 8 are small at 0.7, 0.8, and 0.8 kcal/mol, respectively (see Table 2). For isomer 7, with the β -orientation of the C14 and C15 methyls, conformers 7a and 7c are practically equally probable ($\Delta E = 0.5$ kcal/mol) whereas 7b is less stable than 7a by 1.9 kcal/mol.

The significant ΔE for boat conformers **5d-8d** and **5e-8e** between the more (*C*- and *TC*-) and less stable (*TB*- and *B*-) suggests that the last ones are less probable (for **5-8** $\Delta E_1 = 3.8$, 8.2, 8.4, and 3.7 kcal/mol and $\Delta E_2 = 6.9$, 7.6, 10.8, and 9.5 kcal/mol, respectively, see Table 2).

The results from the MM calculations of the conformations of 5-8 and the experimental x-ray structures for stramonin-B (14) [6] and ambrosin (15) [2] indicate that the conformation of ring B in these compounds is $5,6\alpha,7,8\beta$ -TC and agrees with one of those calculated for model isomers 5-8.

The calculations were performed on a PC Pentium using MMX-86 program with full optimization of the molecular geometry.

REFERENCES

- 1. F. R. Fronczek and N. H. Fischer, Am. Crystallogr. Assn., Ser. 2, 12, 26, 395 (1984).
- 2. G. M. Iskander, B. M. Modawi, H. E. Ahmed, E. O. Schlemper, and H. Dudek, J. Prakt. Chem., 330, 182 (1988).
- 3. I. Krstanovic, L. J. Karanovic, Crystal. Struct. Commun., 10, 793 (1981).
- 4. G. H. Posner, K. A. Babiak, G. L. Loomis, W. J. Frazee, R. D. Mittal, and I. L. Karle, J. Am. Chem. Soc., 102, 7498 (1980).
- 5. D. Vargas, F. R. Fronczek, N. H. Fischer, and K. Hostettmann, J. Nat. Prod., 49, 133 (1986).
- 6. S. Fortier, G. T. De Titta, and P. A. Grieco, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 35, 1742 (1979).